
Financial Forecasting For Stock Market Data

Abhishek Raval

College of Computer and Information

Sciences, Northeastern University

P.O. Box 02120

Boston, USA

raval.a@husky.neu.edu

Ishan H Patel

College of Computer and Information

Sciences, Northeastern University

P.O. Box 02120

Boston, USA

i@patelishan.com

Ishan L Patel

College of Computer and Information

Science, Northeastern University

P.O. Box 02120

Boston, USA

i@ishanpatel.in

ABSTRACT

Forecasting whether the price of stock will increase or decrease is

a difficult task. We try to predict whether the price of stock will

outperform or underperform based on the fluctuations of features

in dataset till previous day.

CCS CONCEPTS

• Machine Learning → Classification & Prediction;

Redundancy; Error Analysis •Artificial Intelligence → Random

Forest, Support Vector Machine, Neural network Algorithms.

ADDITIONAL KEYWORDS AND PHRASES

Stock Prediction, Artificial Intelligence

ACM Reference format:

Abhishek Raval, Ishan Patel, Ishan Patel, 2017. SIG Proceedings Paper in word

Format.

1 INTRODUCTION

Forecasting whether the stock of certain product will escalate or

plummet down is a tough task. Using Classic prediction methods

isn’t a solution as there are lots of factors to be considered upon and

each factor having it’s own complexity. In financial markets,

genetic algorithms are most commonly used to find the

combination values of parameters in trading rules. [1]Earlier we

decided to use Dow Jones dataset of UC Irvine ML Repository on

which genetic algorithm was already used. We had to do lot of pre-

processing on that data, and to avoid wastage of time we decided to

go with free data provided by Yahoo Stocks. [2]Our Dataset

Contained 35 features. We selected the best 20 features out of the

35 features with the help of f_classif function of skicit for

classification.

2 EXPERIMENTAL AND COMPUTATIONAL

DETAILS

2.1 Dataset Features

Our Dataset had following features: DE Ratio, Trailing P/E,

Price/Sales, Price/Book, Profit Margin, Operating Margin, Return

on Assets, Return on Equity, Revenue Per Share, Market Cap,

Enterprise Value, Forward P/E,PEG Ratio, Enterprise

Value/Revenue, Enterprise Value/ EBITDA, Revenue, Gross

Profit, EBITDA, Net Income Avl to Common ,Diluted EPS,

Earnings Growth, Revenue Growth, Total Cash, Total Cash Per

Share, Total Debt, Current Ratio, Book Value Per Share, Cash

Flow, Beta, Held by Insiders, Held by Institutions, Shares Short (as

of, Short Ratio, Short % of Float, Shares Short (prior).

2.2 Data Pre-Processing

X = np.array(data_df[all_features].values)

X = preprocessing.scale(X)

Where,

All_features is list of all the features of dataset as mentioned

above.

np is Numpy library imported as variable np.

2.2 Random Forest code

We use RandomForestClassifier for performing Random Forest

classification on given dataset, where the best result is obtained at

1001 branches and at max depth of 50. And impurity is kept as

none. The entire code is available in randomforest.py

Rf = RandomForestClassifier

(n_estimators =1001 ,max_depth=50 ,bootstrap = True,

oob_score= False, max_leaf_nodes=None, min_impurity_decrease

= 0.0, min_impurity_split = None)

Building RandomForest Model in randomforest.model file.

filename = "randomforest.model"

joblib.dump(rf, filename)

infos.append([rf, "Random Forest"])

2.3 Artificial Neural Networks code

We use MLPClassifier for performing Artificial Neural

Networks on given dataset, where the best result is obtained by

keeping maximum hidden layer as 4000 and stopping the function

at 1001th iteration.

ne= MLPClassifier(hidden_layer_sizes=4000,max_iter=1001)

Saving the Neural Networks Model in neuralnetwork.model

file.

filename = "neural network.model"

joblib.dump(ne, filename)

infos.append([ne, "Neural Network"])

2.4 Support Vector Machine code

We use svm.LinearSVC for performing Support Vector

Machine on given dataset, where the best result is obtained by

keeping maximum iteration as 5000.

svm = svm.LinearSVC(penalty='l2', loss='squared_hinge'

,random_state=None, max_iter=5000).

Saving the model for Support Vector Machine for our dataset in

SupportVectorMachine.model file.

filename = "SupportVectorMachine.model"

Financial Forecasting for Stock Market

2

joblib.dump(svm, filename)

infos.append([svm, "SupportVectorMachine"])

3 RESULTS AND DISCUSSION

3.1 Performance of Random Forest

Accuracy: 0.758389261745 = 75.838%

Precision: 0.785714285714 = 78.57%

Recall: 0.785714285714 = 78.57%

F1: 0.785714285714 = 78.57%

3.2 Performance of SVM

Accuracy:0.624161073826 = 62.41%

Precision:0.627272727273 = 62.72%

Recall:0.821428571429 = 82.14%

F1:0.711340206186s. = 71.13%

3.3 Performance of Neural Networks

Accuracy:0.624161073826 = 62.41%

Precision:0.584158415842 = 58.41%

Recall:0.808219178082 = 80.82%

F1:0.67816091954 = 67.81%

4 CONCLUSIONS

In summary, after performing classification and prediction

using three algorithms, we found Random forest to be best

performing algorithm for given dataset which was deterministic

and kept changing. So we can conclude that Deterministic Datasets

where changes are evitable and frequent, Random Forest predicts

with higher accuracy.

ACKNOWLEDGMENTS

This work was inspired from work by Michael Scott Brown,

Michael J. Pelosi, and Henry Dirska described in Dynamic-Radius

Species-Conserving Genetic Algorithm for the Financial

Forecasting of Dow Jones Index. And Yahoo Finance for providing

the stockmarket dataset.

REFERENCES
[1] Dynamic-Radius Species-Conserving Genetic Algorithm for the Financial

Forecasting of Dow Jones Index Stocks Michael Scott Brown, Michael J. Pelosi,

and Henry Dirska.

[2] https://finance.yahoo.com/most-active

[3] http://scikit-learn.org/stable/modules/tree.html

[4] http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.htm

[5] http://scikit-learn.org/stable/modules/svm.html

[6] https://matplotlib.org/

[7] https://scikit-neuralnetwork.readthedocs.io/en/latest/

[8] http://scikit-learn.org/stable/modules/neural_networks_supervised.html

